If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10a^2+24a+96=0
a = -10; b = 24; c = +96;
Δ = b2-4ac
Δ = 242-4·(-10)·96
Δ = 4416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4416}=\sqrt{64*69}=\sqrt{64}*\sqrt{69}=8\sqrt{69}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{69}}{2*-10}=\frac{-24-8\sqrt{69}}{-20} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{69}}{2*-10}=\frac{-24+8\sqrt{69}}{-20} $
| 7k=2=4k-10 | | x-5x-10=0+2x-7 | | x/2-15=-20 | | 4x+1-2x=7+2x | | 5x+25-3x=85 | | 20(8)=15y | | 4x+1-x=3x+1 | | -13a^2-18a+412=0 | | 4x+2-2x=2x-5 | | 2x-16=21 | | 4y–21=27 | | 10(2x+8)/30=5 | | -4(4+6x)=32 | | -13a^2+18a+412=0 | | -3(-6x-6)=90 | | 2x=2(x=1)+x | | 423m=-966 | | 12(8+x)=36 | | 7(2+6x)=-406 | | 12.3t^2-8t-33=0 | | 2x+50=7(x-2)+4 | | 2(1-17a)=38-2a | | 56=5w-14 | | 3(2z-100=-12 | | 7(y-3)+y=27 | | 7a+10=5a+2 | | 11w-9w=10 | | 3x²+4=436 | | -3+m/2=-5 | | -2x=-10x+6 | | 2/3=p/3 | | -0.5x=1.1=-2.9 |